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Received 26 March 1986 

Abstract. The Darboux transformation is used to generate explicit solutions of the time- 
dependent Schrodinger equation in one dimension. The potentials are a reflectionless 
potential and certain asymmetric double well potentials. 

1. Introduction 

If explicit solutions of a second-order ordinary differential equation are known, then 
the Darboux transformation generates explicit solutions of a related differential 
equation (Deift and Trubowitz 1979, Lamb 1980). When applied to the time-indepen- 
dent Schrodinger equation, this method gives a new equation with a different potential 
function. The purpose of this paper is to apply the procedure to the time-dependent 
Schrodinger equation in one dimension. A number of new explicit solutions are thereby 
obtained, given by closed formulae which do not require knowledge of the eigenfunc- 
tions. 

In § 2 the application of the Darboux transformation to the time-independent 
Schrodinger equation is sumr,larised, and then extended to give general results for the 
time-dependent equation. Section 3 discusses the case where the known (soluble) 
problem is the free particle in one dimension and the transformed problem has potential 
-2p2 sech’ px. This is a reflectionless potential. The s wave of the three-dimensional 
problem is also considered. The last section uses the one-dimensional harmonic 
oscillator as the known (soluble) problem. This leads to explicit time-dependent 
solutions for a particle moving, for example, in a double-well potential; the formulae 
contain the error function. 

Time-dependent wavefunctions for motion in various potentials, which include 
-2p’ sech’ Px, have been given by Gutschick and Nieto (1979). Their formulae are 
eigenfunction expansions, which are not easily computed, and represent wavepackets 
that oscillate within the potential well. The results in § 3 correspond to scattering states. 

2. The Darboux method 

Suppose U ( x )  is a potential for which there are some known explicit solutions of the 
time-independent Schrodinger equation 

(2.1) Ho+ = ( -D’ + U )  + = A +  
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where D =  d/dx. From some particular solution 4, with A = p, define operators 
(’ denotes differentiation with respect to X) 

B = D - ( 4’/ 4 ) (2.2) 

H = H , - 2 ( ( b r / 4 ) ’ .  (2.3) 

H o = C B + p  H = B C + p  (2.4) 

H,+=,~$+.H(B+)=A(B+).  (2.5) 

C = -D - ( d r /  4 )  

Then 

and 

Thus from known eigenfunctions + with the potential U one obtains eigenfunctions 
B+ for the Schrodinger equation with potential U - 2 ( ~ $ ~ / 4 ) ’ .  A detailed discussion 
of the theory was given by Deift and Trubowitz (1979) and a useful summary of specific 
calculations was given by Sukumar (1985). 

Since equation (2.5) relates any eigenfunctions of H to those of H,, with the same 
eigenvalue, the transformation operator B can evidently be applied to a superposition 
of eigenfunctions. This means that the method also works for solutions of the time- 
dependent Schrodinger equation. For an arbitrary initial state x ( x ) ,  the solution of 
Ho+ = i(a+/at) is exp(-iH,t)X. From (2.4) 

BH, = H B  B exp(-iH,t) = exp(-iHt)B (2.6) 

B[exp( - iH, t )~]  = exp( -iHr)( Bx). (2.7) 
The work in this paper is based on this equation, which states that operating with B 
on the solution of Ho+ = i (a+/a t )  emanating from ,y gives the solution of H+ = i ( a + / d t )  
emanating from Bx. 

and therefore 

From (2.2), C is the adjoint of B in this application. Then, using (2.4), 

(Bx9 Bx) = (x, CBX) = (x, (Ho  - p )x). (2.8) 
This allows the normalisation of ,y to be chosen so that Bx is normalised. The same 
manipulation shows that the average energy is generally raised by the transformation. 
Using (2.4) 

Then the Schwartz inequality (H,x, H,x)(x, x) 2 (x, H,x)* gives 

(2.10) 

where the equality occurs only if x is an eigenfunction of Ho.  
Next consider the conditions on a given initial function #(x,O) in order for the 

resulting solution of H+=i(a+/ar) to be obtained using (2.7). A normalisable x 
satisfying Bx = #(x, 0) is required. This is not possible if +(x, 0) = l/c+(x), because 
C (  1/4) = 0, and the numbers in equation (2.8) would all be zero. The initial function 
must be orthogonal to l/4. Then define F by 

Fb) = d y + ( y ,  o ) l d ( y )  (2.11) 
-02 
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with F(m) = 0 from the orthogonality assumption. It is easy to verify that 

x ( x )  = 4 ( x ) F ( x )  (2.12) 

satisfies 

B x = [ D - ( 4 ’ / 4 ) 1 x = c L ( x , O ) .  (2.13) 

The above orthogonality condition is a trivial deficiency, because if p is less than 
the ground-state eigenvalue of H,, then p is the ground-state eigenvalue of H, and 
1/4 is normalisable and is the ground-state eigenfunction. (This follows from (2.4) 
and C (  1/4) = 0.) This eigenfunction can be projected out of a given initial state and 
recombined after the time dependence has been obtained. Because (1/4) is an 
eigenfunction, initial orthogonality to $ ( x ,  0) persists for all t .  Also 1/4 is non-zero 
and located near the minimum of the new potential, so the real and imaginary parts 
of + ( x ,  t )  must have zeros in the region to effect the orthogonality. When the zeros 
in the real and imaginary parts are near each other, l+(x,  t )I2 will have a minimum (as 
in figures 1 and 4).  

Position 

Figure 1. Wavepacket moving through a potential V ( x )  = -0.72 ~ e c h ~ ( 0 . 6 ~ ) .  The centre 
moves with speed 1.005. 

Note that if 4 is the ground-state eigenfunction of H,, then B 4  =0,  l / d  is not 

This section has assumed that 4 ( x )  has no zero; otherwise the results can only be 
normalisable and p is not an eigenvalue of H. 

applied in restricted regions in which 4 does not vanish (Lamb 1980, p 94). 

3. Transformation of free-particle wavefunctions 

Take 

H,= -D2 U ( x )  = 0 4 ( x )  =cosh p x  p = -p2 (3 .1)  
to obtain 

B = D - p  tanh p x  (3.2) 
and 

H = -D2 - 2p2 sech’ px .  (3.3) 
The resulting derivation of the time-independent eigenfunctions of H is well known 
(Lamb 1980). 
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A textbook example of a solution of the time-dependent free particle equation is 
obtained from 

x (x )  =exp(- fa ’x’+ih)  (3.4) 

exp(-iHot)x(x) = 7’” exp(-fa2x2T+ik7x -it7k2) (3 .5)  

~ = ( 1 + 2 i a ’ t ) - ’ .  (3.6) 

(3 .7)  

(3 .8)  

(3 .9)  

as 

with 

Applying the operator B to the function in (3.5) gives 

$(x, t )  = T’/’(-a2x7+ik7-P tanh px)  exp(-fa2x27+ikTx-irTk2) 

as a solution of 

ia$/at = H$ = ( -D’ - 2p’ sech2 px)+ 

emanating from the initial state 

$(x,O)= & = ( - a 2 x + i k - P  tanh px)  exp( - f a2x2+ih ) .  

To obtain normalised solutions, (3.4) is multiplied by the familiar factor (a/J.rr)’/*; 
also (3 .4)  and (2.8) give 

(Bx ,  B x )  = (x, (-D’ + p ’ ) ~ )  = (JT/  a)( k 2  +:a + p’ ) .  
Thus a normalised solution of (3 .8)  is obtained by multiplying (3.7) by [ a / ( k 2 + & ’ +  
p2)J.rr]’”. Using integration by parts this may also be verified directly. 

I$( x, t )I’ = (T/’[ ( a’x + p tanh px)‘ + ( k  - 2 a 2 P t  tanh px)’] exp{ -a’l~I’( x - 2kt)’} 

The position probability resulting from (3 .7)  is 

(3.10) 

= l$(-x, - t ) l ’ .  (3.11) 
Figure 1 shows (3.10) (after normalisation) with a = 0.05, p = 0.6, k = 0.5, and t = -75, 
0,25. The minimum near x = 0 is due to orthogonality to the ground state, as discussed 
at the end of the previous section. Note that (3.11) immediately gives (3.10) also at 
t = -25 and t = 75. 

The Gaussian part of (3.10) ensures that 141’ is negligible outside some region 
centred on x = 2kt, as in figure 1 .  Then for sufficiently large It/ ,  tanh px can be replaced 
by * l ,  the sign being that of t. This permits analytic evaluation of expectation values: 

U = ( - 2 i J / d x ) = 2 k [ l + a 2 / ( p 2 + t a 2 + k 2 ) ]  (3.12) 

(x )=  u t * p / ( p ’ + ~ a ’ + k ’ ) .  (3 .13)  
These equations hold provided $(x, t )  is negligible near x = 0, for example if It1 > 50 
for the case considered in figure 1 .  

The energy expectation values, given by (2 .9) ,  are 

(x, Hox) = k 2 + & 2  

($, H+) = (X, HoX) ++a2( a 2 + 4 k 2 ) ( p ‘ + $ a 2  + k 2 ) - ’ .  
Another initial state (Glasser 1980) for which the free-particle problem is soluble 

(3.14) 

is x (x )  = exp(ikx) sech ax.  Then 

+(x, 0) = Bx = ( ik - a tanh a x  - p tanh p x )  sech ax.  
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The free-particle solution was given as a series, which can be summed explicitly for 
certain values of t. Applying B to such closed form expressions gives, for example, 

$(x, t =  7r /4a2 )=[ ( ik -a  t a n h y - p  tanhpx)exp(i7r/4+ikx-ik27r/4a2) 

- i (2ia2x/7r-a  tanh y - p  t anhpx)  exp(ia2x2/.rr)] sechy (3.15) 

where y = a x  - k r / 2 a .  Again l$(-x, - ? ) I 2 =  I$(x, t )12;  computer plots of [ $ I 2  using 
(3.14) and (3.15) give pictures like those in figure 1. 

For a given $(x,O), the required procedure is to project out the bound-state 
component (1/ 4 = sech p x )  and then evaluate 

x ( x )  = mcx,[;, $ ( y ,  0) cosh Py dy 

as given by (2.11) and (2.12). If x ( x )  can be thus obtained explicitly, and also 
exp(-iHot)x(x) in closed form, then $(x, t )  can be given in closed form. Otherwise 
this method has no advantage over the direct use of the propagator (Crandall 1983a). 

The s wave of a three-dimensional system is equivalent to the one-dimensional 
system restricted to odd parity states. Since H commutes with parity, an odd initial 
state gives an odd state at any other time, so any odd solution of the one-dimensional 
problem gives an s-wave solution for the central potential V( r )  = -2p2 sech’ pr. In 
analogy with (3.4), take X(r) = -exp(-&x2r2) cos kr to obtain 

u ( r ,  0) = [ ( a 2 r + P  tanh p r )  cos k r+  k sin kr] exp(-+a2r2)  

and 

u ( r ,  t )  = T1’2[(a’rT+P tanh p r )  cos(krT)+ k7 s i n ( k r ~ ) ]  exp(-+(Y2r2T-itTk2) (3.16) 

with ~ = ( 1 + 2 i a ~ t ) - ’ .  Figure 2 shows lu(r, t)12 from (3.16) with k=0.5,  a=O.O5, 
p = 0.6, t = -40, 0, 60. Note that in order for U( r, t )  to be an odd function (zero at 
r = 0) one must choose an (unphysical) even function for x( r ) .  

4. Transformation of oscillator wavefunctions 

Let 

Radia l  position 

Figure 2. Spherically symmetric s wave interacting with a central potential V ( r ) =  
-0.72 sech2(0.6r). At r = -40 the wave is moving inwards (to the left); a t  I = 60 it moves 
outwards. 
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where y2 > .rr/4p. Taking 

H o e  -D2+p2x2+2p 4 ( x )  = f ( x )  exp(4px2) P = P  (4.2) 

B =  D + A ( x ) =  D-px-exp(-px2)/f(x). (4.3) 

gives 

The new potential -p2x2 + 2A2(x) is shown in figure 3 for p = 0.97 and y = 0.9. Other 
examples (with p = 1, a = 1/ y)  are shown in figure 3 of Sukumar (1985). 

I I I I I I I 
- 4  - 2  0 2 4 

Position 

Figure3. An asymmetric double well potential and its lowest two normalised eigenfunctions; 
the eigenvalues are 0.97 and 2.91. 

These potentials were first considered by Mielnik (1984), who showed that the 
spectrum coincided with that of the harmonic oscillator, the eigenvalues being 
P, 3P, SP, . . . . The method was essentially that of the Darboux transformation, 
although not called such as it was obtained by considering factorisations of Ho and 
H. Mielnik did not normalise the eigenfunctions, but the required constants can be 
found using the method given by Zheng (1983), or by direct integration after noting 
that A(x) in (4.3) has the form A(x)=-px-f (x) / f (x) .  The first two normalised 
eigenfunctions 

(4.4) 

(4.5) 

are also shown in figure 3. The function +, is actually negative in the region of the 
potential minimum, as required to obtain orthogonality to 

A textbook example (Schrodinger, 1926) of a solution of the time-dependent 
harmonic oscillator equation H04 = i84/ t is obtained from 

~ ( x )  = exp[-$(x - c)’] (4.6) 

as 

@(x, t )  = exp[-fpx2+pcx exp(-2ipt)-$c2 exp(-4ipt)-$c2-3ipt]. (4.7) 
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, i 
-6 - 4  - 2  0 2 1, 6 

Position 

Figure 4. Oscillation of a wavepacket in a double well potential with period 3.24. The 
energy ( H )  = 4.016 is below the potential maximum. 

Applying the operator B of equation (4.3) gives 

+(x, t )  = [ - p x + p c  exp(-ZiPt)SA(x)]@(x, t )  (4.8) 

(4.9) as a solution of ia+/at  = H$ = ( -DZ - p 2 x 2 +  2Az)$. 
This solution has the same period T / P  as @(x, t )  and 

l $ 1 2 = [ - 2 A P ~ + P ’ ~ 2 + A Z + p 2 ~ 2  

+2Pc(A-px)  cos 2Pt] exp[-p(x-c cos 2Pt)’l. (4.10) 

From (4.6) and (2.8), the position probability is obtained by dividing (4.10) by 

(Bx ,  B x )  =(x, (-DZ+ P’x’ + P ) x ) =  (2+ P c ~ ) ( / ~ T ) ” ~ .  
The expectation value for the energy is evaluated from (2.9) as 

( H ) = 3 P + p 3 c 4 / ( 2 + P c Z ) .  

When c = 0, (4.8) is the stationary state (4.5). For small values of c, (4.8) and (4.10) 
represent what is essentially a wavepacket oscillating about the secondary minimum 
of the potential, although there is a small (negative) part overlapping +o to produce 
orthogonality. For larger c the wavepacket passes periodically into the region of the 
minimum; and at these times (4.10) has a distinctive minimum, as expected from the 
discussion in 0 2. Figure 4 shows 191’ at quarter- and half-period times, taking c = 1.5; 
since (H) is less than the potential maximum, this is an illustration of tunnelling. 

5. Conclusion 

The Darboux transformation has been applied to the time-dependent Schrodinger 
equation, giving analytic solutions from which it is easy to obtain expectation values 
or position probabilities. The wavefunctions give explicit examples of the following 
results. 

Firstly Crandall (1983b) has shown that a wavepacket incident on a reflectionless 
potential is transmitted without change of shape and with a time advance in comparison 
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with free-particle motion. Equation (3.11) is an example of the preservation of shape 
and equation (3.13) shows the time advance. 

Secondly Nieto et a1 ( 1985) have discussed tunnelling in double-well potentials 
from the secondary minimum to the actual minimum. Their U = 1 potential has very 
similar properties to the potential shown in figure 3: the eigenvalues are equally spaced 
in integer steps and the first two eigenfunctions have little overlap. For small values 
of c, equation (4.10) represents a wavefunction that does not tunnel, looking very 
similar to the Gaussian packet in the U = 1 potential. When tunnelling is obtained 
from (4.10) by increasing the energy, as in figure 4, the packet splits into two humps. 
This is similar to the evolution of a Gaussian packet in the U = 2 potential of Nieto 
er a1 (their figure 5 ) .  

Note added in proof: In a recent paper by Gaveau and Schulman (1986) the propagator for the potential 
-2h’ sech’ x is derived using the Darboux transformation. 
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